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Cardiac diseases, like those related to abnormal heart rate activity, have an enormous economic and psy-
chological impact worldwide. The approaches used to control the behavior of modern pacemakers ignore
the fractal nature of heart rate activity. The purpose of this article is to present a Cyber Physical System
approach to pacemaker design that exploits precisely the fractal properties of heart rate activity in order to
design the pacemaker controller. Towards this end, we solve a finite horizon optimal control problem based
on the heartbeat time series and show that this control problem can be converted into a system of linear
equations. We also compare and contrast the performance of the fractal optimal control problem under six
different cost functions. Finally, to get an idea of hardware complexity, we implement the fractal optimal
controller on a Virtex4 FPGA and report some preliminary results in terms of area overhead.
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1. INTRODUCTION

Cyber Physical Systems (CPS) consist of a network of embedded computation and
communication devices together with sensors that can monitor and control various
physical processes [Lee 2010; Stankovic et al. 2005] (see Figure 1). Such physical pro-
cesses can take place in medical devices (e.g., health care system for monitoring and
diagnosis, drug delivery systems, robotic surgery), transportation systems (e.g., traffic
control, collision avoidance), electric power and environmental control, energy genera-
tion and transportation, zero-net energy buildings, access to dangerous or inaccessible
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Fig. 1. CPS paradigm showing a network of computation devices interacting with physical world processes.
The role of the computational components (e.g., sensors, audio/video cameras) of the CPS network is to collect
and process information about various physical processes, communicate it via either wired (uninterrupted
lines) or wireless (dotted lines) links to the decision centers, which in turn use this information for controlling
the dynamics of physical processes or CPS components. The characteristics of physical processes are crucial
for designing, optimizing and determining the CPS structure (e.g., required number of computational nodes
to achieve a certain monitoring confidence) and its dynamics (e.g., finding the best communication scheduling
with minimum energy overhead) [Bogdan and Marculescu 2011].

environments (e.g., autonomous systems for search and rescue, fire fighting and explo-
ration), communication and financial networks, etc. [Sticherling et al. 2009].

In order to build CPS it is essential to know the system dynamics so time becomes
an intrinsic component of the programming model of such systems. Also, CPS need to
be low power, reliable, safe, real time, efficient and secure. Consequently, the theory
of CPS design requires accurate modeling of physical processes so that they can be
efficiently characterized and controlled over a heterogeneous network of sensor and
computation devices [Bogdan and Marculescu 2011] (see Figure 1).

The CPS targeting health care applications need to be adaptive, autonomous, ef-
ficient, functional, reliable and safe. At the same time, they also need to maximize
patient’s quality-of-life, while minimizing the intrinsic costs of hospitalization. For in-
stance, statistics from the Centre of Disease Control and Prevention predict more than
600,000 deaths per year due to cardiac issues. Therefore, it becomes necessary to build
bio-implantable devices that are robust in monitoring and transmitting the heart rate
to various medical devices or experts, as well as controlling the misbehavior of heart
in real time [Jaegar 2010].

The development of CPS for health care applications has been significantly slowed
down due to the lack of a coherent theory that can allow designers to comprehend and
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Fig. 2. CPS approach to pacemaker design. Interaction with medical experts/devices on a continuous basis
helps better monitoring and control of the heart rate activity. The model identified is controlled through a
suitable optimal control algorithm and the controlled output is fed back for heart pacing [Bogdan et al. 2012].

coordinate the cyber and physical resources in a unique, efficient, and robust approach.
Such a CPS example is the artificial pacemaker, which is a medical device meant to
regulate the heart rate using electrical impulses. In short, a pacemaker consists of
both analog (i.e., sense amplifiers to monitor information about heart rate activity
and pacing output circuitry) and digital components (i.e., microprocessors and memory
blocks to actuate pacing events) [Haddad et al. 2006; Sanders and Lee 1996]. The
control problem of an artificial pacemaker consists of first identifying the parameters
of the heart model and then controlling its rate using a characteristic variable (e.g.,
content of venous oxygen, R-R time intervals, etc.) [Inbar et al. 1988; Hexamer et al.
2001; Zhang et al. 2002].

In Figure 2, we illustrate the idea of using a CPS approach to pacemaker design. As
it can be seen, this consists of four important blocks, namely, the Observation, Com-
putation, Communication and Control, and Actuation. The sensors in the Observation
block gather the heart rate time series of the patient; this time series is later used to
model the heart rate variability. Based on the parameters identified by modelling the
heart rate variability, the role of the pacemaker control algorithm is to verify whether
the heart rate is normal or inductive to a life threatening condition; if the later is true,
then the control algorithm is supposed to bring it down to normal levels. The control
algorithm computes the pacing frequency required to control the heart rate to a normal
level of say 75 beats/min; by changing the parameters in the cost function used by the
control algorithm, the time required to bring the heart rate down to a normal level
can be reduced. The pacing frequency computed by the algorithm is then fed to the
patient’s heart via the pacemaker Actuation block.

Recent research suggests that heart rate variability of healthy individuals is nei-
ther periodic, nor fully chaotic, but instead characterized by universal fractal laws
[Ivanov et al. 2001, 1999, 1998; Kiyono et al. 2009]. However, the control algorithms
in current pacemakers are based on linear system theory [Doyle-III et al. 2011; Lopez
et al. 2010; Nakao et al. 2001; Neogi et al. 2010] or neural networks [Sun et al. 2008].
Other limitations of current pacemakers come from the fact that all proposed pacing
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algorithms rely on optimal closed loop pacing algorithms that depend on the char-
acteristics of individual’s heart on short and long time scales, as well as adequate
medical therapy (see Figure 2) [Coenan et al. 2008; Dell’orto et al. 2004; Schaldach
1998; Simantirakis et al. 2009].

Starting with these overarching ideas, our contributions in this article are: First, we
propose a more accurate modeling of the heart rate variability via fractional differential
equations. Second, we formulate the rate adaptive pacing algorithm as a model predic-
tive control problem seeking to solve iteratively a constrained finite horizon optimal
control with fractal state equations. Third, we compare and contrast various control
approaches for designing pacemakers and give a sense of the hardware implementation
complexity of such a fractal controller. Taken together, these new contributions demon-
strate the power of taking a CPS approach towards designing such bio-implantable
devices where the effects due to interactions among the cyber and physical components
are important and cannot be ignored.

The remainder of this article is structured as follows: Section 2 summarizes the com-
plex mechanism behind human heart rate activity, the main approaches for building
demand pacemakers and the motivation for a fractal optimal control approach. Section
3 reviews the concept of fractional calculus that is needed to model the physical pro-
cesses in pacemakers. Section 4 proposes a constrained finite horizon optimal control
approach to regulate the dynamics of a fractal process (i.e., R-R intervals) consider-
ing six performance cost functions. Section 5 presents the goodness-of-fit analysis for
two modeling approaches (i.e., a non-fractal approach based on classical integer order
calculus and a fractal one based on fractional order differential equations) and the
performance analysis of the proposed control problems. Also, the hardware complex-
ity of such a fractional controller is discussed using a real FPGA platform. Section 6
concludes the article by summarizing our main contributions and suggesting a few fu-
ture directions of research for more accurate dynamic optimization algorithms of such
medical systems.

2. MOTIVATION AND PRIOR WORK

2.1. Cardiac Signals and Role of Pacemakers

The human heart is divided into four chambers: two atria (top chambers holding the
blood) and two ventricles (bottom thick- walled chambers meant to help pumping
the blood into the circulatory system). The heart collects the oxygenated blood from
the lungs in the left atrium and the deoxygenated blood from the body in the right
atrium. At the time of collection of blood in the atria, the myocardium and other
specialized fibers are resting. This is followed by a muscle contraction, which results in
a heartbeat when the oxygenated blood from the left ventricle flows into the body and
the deoxygenated blood from the right ventricle flows into the lungs for oxygenation.
This cycle repeats for every heartbeat and this way the normal circulation of blood flow
is maintained. This cycle is also called cardiac cycle and is controlled by some complex
electrical signals needed to maintain the heart rate within certain limits [Fauci et al.
2008; Li et al. 2012]. Any disturbance in this cycle may result in heart diseases like
tachycardia (fast pacing) and bradycardia (slow pacing).

A QRS complex is generated when ventricles depolarize and a P-Wave is generated
when atria depolarize. A cardiac cycle is characterized by the duration between two
consecutive occurrences of the QRS complex; this R-R time interval (see Figure 3) is
used by physicians to characterize the heartbeat.1 The relation between the heartbeat
and the R-R interval motivates us to use the R-R interval dynamics to solve a fractal

1An R-R interval of 1 second means a heart rate of 60 beats per minute.
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Fig. 3. A short electrocardiogram (ECG) showing the heart activity for three consecutive beats. The P-wave
(atria depolarization), QRS complex (ventricular depolarization) and T-wave (ventricular repolarization) are
shown. The R-R interval corresponds to the time elapsed between two consecutive heartbeats as a result of
muscle contraction. The R-R interval dynamics is essential for medical diagnosis and pacemaker design and
optimization.

optimal control problem that can control the heart rate in patients affected by some
abnormalities.

2.2. Control Based Approaches to Pacemaker Design

Pacemakers were invented in 1932; since then, they have evolved from fixed rate
pacemakers (i.e., pacemakers that deliver a pulse at fixed intervals of time) to demand
pacemakers (i.e., pacemakers that deliver impulses only when a missing heartbeat is
found). The control action in pacemakers plays a major part in demand pacemakers.
For example, in the case of fast heart activity, if the pacemaker delivers an electrical
impulse, this can become fatal to a patient as the heart cannot get enough time to supply
the oxygenated blood and take the deoxygenated blood away from the body. In the case
of lower heart rate, missing an electrical impulse can also turn out to be fatal since the
body cannot get the oxygenated blood on time and then the cardiac cycle is disturbed.

Based on control approaches used and the state variables that are optimized, the
rate responsive (or demand) pacemakers can be further divided into four main types
namely: open loop (heart rate is defined based on current state using a predefined model
without any feedback) [Alt et al. 1989; Bacharach et al. 1992; Humen et al. 1985; Stangl
et al. 1989], closed loop (pacing rate is determined using a feedback loop that supplies
information about the output) [Inbar et al. 1988; Jiang et al. 2011; Haddad et al.
2006; Hexamer et al. 2001; Hung 1990; Lee et al. 2011; Neogi et al. 2010; Sun et al.
2008; Zhang et al. 2002], metabolic (pacing depends on metabolism and or heart rate
activity) [Lee et al. 2011; Nakao et al. 2001; Sugiura et al. 1983; Sugiura et al. 1991],
and autonomous nervous system (ANS) controllers [Nakao et al. 2001]. For example,
Inbar et al. [1988] describe a closed loop control approach where the content of venous
oxygen is kept under a pre-defined saturation threshold needed to keep the heart rate
under control. Along the same lines, [Hexamer et al. 2001] describe an approach in
which atrio-ventricular conduction time (AVCT) is kept under control.

Zhang et al. [2002] also describe a closed loop approach that makes use of a pro-
portional integrative derivative (PID) controller to reach a predefined R-R interval. A
spiking neural network (SNN) based pacing device is proposed by Sun et al. [2008]; this
device is also based on timing behavior of atrial and ventricular contraction, which is
used to predict the pacing delays. In this model, a second order transfer function is used
to determine the delays in the impulses delivered by SNN neurons. Neogi et al. [2010]
model the heart rate activity by a second order transfer function and use a proportional
plus derivative (PD) controller to control it. The basic assumption in all of these ap-
proaches is that they model the state variables via integer order differential equations.
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Fig. 4. (a) R-R interval variation as a function of heartbeat number. (b) Detrended fluctuation analysis F(n)
of R-R interval exhibits a linear behavior on log-log coordinates, which shows the fractal properties of the
R-R interval.

Jiang et al. [2011] introduce a testing software platform that models the heart timing
and electrical impulses via a finite state machine interfaced with a postulated pace-
maker. The heartbeat control algorithm used by Lopez et al. in [Lopez et al. 2010]
makes use of the concept of proportional gain and L∞. [Sugiura et al. 1991] used fuzzy
control theory for heart pacing using respiratory rate and temperature as state vari-
ables. On the other hand, Nakao et al. [2001] use blood pressure as state variable to
regulate the heart rate.

Of note, all these approaches model heart rate or other physiological process via
linear state equations. However, as can be seen in Figure 4(a), the process describing
the heart rate activities is neither completely periodic, nor completely random. Indeed,
by relying on detrended fluctuation analysis [Ivanov et al. 1998] and analyzing the
fluctuations F(n) as a function of scale n (see Figure 4(b)), one can observe the existence
of linear scaling in log-log coordinates. This shows that the R-R intervals exhibit a
fractal behavior that cannot be properly modeled using the integer order derivatives
employed by classical control theory. Based on the above observations, we argue that
the control algorithms for demand pacemakers should also rely on concepts rooted in
fractional calculus and use a fractal model to describe the heart rate activity. Such an
approach is described in the following sections.

3. BASICS OF FRACTIONAL CALCULUS

Fractional Calculus originates some hundreds of years back in some correspondence
between L’Hospital and Leibniz where they argued over the meaning of introducing
a 0.5 order differentiation [Podlubny 1999]. Since then, fractional calculus has found
several applications in engineering (e.g., control [Oustaloup 1995; Podlubny 1999;
Agrawal et al. 2010], bioengineering [Magin 2006]), physics (e.g., viscoelasticity
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[Mainardi 2010], dielectric polarization [Onaral and Schwan 1982], and heat transfer
[Battaglia et al. 2000]).

In short, fractional (or fractal) calculus incorporates integration and differentiation
of arbitrary (i.e., non-integer) orders [Mandelbrot 2002; Podlubny 1999] of the dynamic
characteristics of the target process x(t) (e.g., R-R intervals, flow of oxygenated blood).
This creates the difference between the integer order and the fractal calculus since, in
the latter case, the process x(t) can be represented as a weighted sum of the previous
events x(τ ), where τ ε (0, t]:

ti D
α
t x(t) = dαx(t)

dtα
= 1

�(n − α)

(
d
dt

)n ∫ t

ti
(t − τ )n−α−1x(τ )dτ. (1)

In this representation, α is the fractional order of the derivative and �(n − α) is the
Gamma function [Mandelbrot 2002]. This continuous definition has the following dis-
crete time representation:

ti D
α
t x(t) = dαx(t)

dtα
= lim

�t→0

1
�tα

[ t−ti
�t ]∑

j=0

wα j x(t − j�t), (2)

where wα j = (−1) j
(
α

j

)
, here

(
α

j

) = α(α−1).....(α− j+1)
j( j−1).......1 , �t is the time increment, [(t − ti)/�t]

represents the integer part of (t − ti)/�t. From these equations, it can be clearly seen
that the role of power law in time difference is directly captured in both Equation (1)
and Equation (2); this way, a more accurate description of the heart rate variability
process can be achieved and also better optimization becomes possible. We discuss
these aspects in the next section.

4. FRACTIONAL CALCULUS BASED MODELING AND OPTIMAL CONTROL
OF HEART ACTIVITY

In this section, we consider a constrained finite horizon optimal control problem. More
precisely, given an initial time ti and final time tf , the optimal control tries to find
the pacing frequency such that the cost function is minimized with a constraint on
heart rate following the fractional dynamics. Note that the proposed formalism can be
applied to other state and control variables as long as the state corresponds to a fractal
physiological process (e.g., respiration, brain activity); it is evident here that modeling
of heart rate via fractional differential equations corresponds to the model parameter
identification block as shown in Figure 2.

Now we turn our attention to the cost functions. In the design of an optimal con-
troller, there are two major quantities that determine the effectiveness of the designed
controller, i.e., the error and the time at which the error compared to a reference value
reaches the y% level [Schultz and Rideout 1961; Graham and Lathrop 1953]. The time
at which the error reaches the y% level is defined as the minimum time after which
the error is not more than y/2% compared to the reference value. In general the value
of y is chosen to be 1, 2 or 5; we have chosen it to be 1% in our analysis. In our case,
the error specifies the difference between the actual heart rate and the reference heart
rate suggested by a physician as a result of some medical investigations. Consequently,
this error is most of the time included in the cost function of the optimal controller.
In [Schultz and Rideout 1961; Graham and Lathrop 1953] an entire class of cost func-
tions that take the error and time as optimization penalties have been discussed. It is
worth mentioning, that the finite horizon fractal optimal control that we discuss next
corresponds to the optimal control algorithm block in Figure 2. In our case, we have
considered the optimal control of heart rate under six different cost functions that can
correspond to various medical conditions.
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4.1. Finite Time Fractal Optimal Control with Integral of Squared Tracking
Error Criterion (ISE)

The cost function which needs to be minimized in this case is as follows:

min
f (t)

1
2

∫ tf

ti
[w(t)(x(t) − xref )

2 + z(t) f (t)2]dt (3)

subject to the following constraints:

ti D
α
t x(t) = a(t)x(t) + b(t) f (t) (4)

0 ≤ xmin ≤ x(t) ≤ xmax, x(ti) = x0, x(tf ) = xref (5)

fmin ≤ f (t) ≤ fmax, (6)

where x(t) represents the heart rate activity seen as a state variable, xref denotes the
reference value that needs to be achieved in terms of heart rate activity, f (t) is the
pacing frequency, w and z are the weighting coefficients for the quadratic error and
magnitude of the control signal, respectively.

In this formulation, α is the exponent of the fractional order derivative characterizing
the dynamics of the heart rate activity x(t), a(t) and b(t) are weighting coefficients for
the heart activity and pacing frequency. Here α, a(t) and b(t) are dependent on the R-R
interval dynamics, so these are physical variables (dependent on physical process),
while the weighting coefficients w and z in Equation (3) can be manipulated by the
CPS designer to ensure a fast convergence of R-R interval to the reference value. The
effect of w on the convergence rate is discussed in the latter part of Section 5.2, and it
is shown in Figures 11 and 12.

In addition, xmin and xmax are the minimum and maximum bounds on heart rate
activity x(t), x(ti) is the initial condition, x(tf ) is the final condition, fmin and fmax are
the minimum and maximum allowed bounds on pacing frequency f (t).

By focusing on the squared of error in Equation (3), the optimal controller tries to find
the pacing frequency such that both positive and negative deviations from the reference
value for the R-R interval are minimized. The use of the integral of squared error
between the actual and the reference heart rate is also attractive due to the following
reasons: 1) It simplifies to linear equations when solving the optimal conditions. 2) The
ISE criteria is in general robust to parameter variations. In this setup, we have to deal
with very specific initial and final values summarized in Equation (5). Consequently,
the role of the controller is to determine the right pacing frequency so as to bring the
heart rate from a life threatening rate (x0) to a final normal heart rate (xref ), which can
be suggested by medical experts.

To prevent the heart muscle be driven at an excessive pacing rate, we have to impose
the conditions on the R-R interval and pacing frequency as given by Equations (4) and
(6), respectively.

To solve this optimal control problem, we use the concept of Lagrange multipliers as
follows:

L(x, f, w, z, β1, ξ1, β2, ξ2, λ) =
∫ tf

ti

{
w(t)(x(t) − xref )

2

2
+ z(t) f (t)2

2
+ β1( f − fmin − ξ1)

+β2( fmax − f − ξ2) − λ

[
dαx(t)

dtα
− a(t)x(t) − b(t) f (t)

]}
dt.

(7)
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where λ, β1 and β2 are the Lagrange multipliers associated with the dynamical state
equation for x(t) and the constraints on the control signal f (t), while the slack variables
ξ1 and ξ2 are needed to convert the inequality bounds on f (t) into equality constraints.

By expanding L around τ = 0, using Taylor series expansion and setting ∂L
∂τ

= 0, we
get:

∂L
∂x

+t Dα
tf

∂L
∂ti D

α
t x

= 0,
∂L
∂ f

= 0,
∂L
∂λ

= 0,
∂L
∂β1

= 0,
∂L
∂β2

= 0 (8)

where t Dα
tf

and ti D
α
t represent fractional derivatives operating forward and backward

in time, respectively.
In order to solve Equation (8), we discretize the interval [ti, tf ] into N equal intervals

of size �t = (tf −ti )
N . The formula in Equation (2) can be used to express the optimality

conditions as follows:
k∑

i=0

(−1)i

�tα

(
α

i

)
x((k − i)�t) − a(k�t)x(k�t) + (b(k�t))2[λ(k�t) + β1(k�t) − β2(k�t)]

z(k�t)
= 0,

(9)
where k = 1, . . . , N represents the k-th discretization time interval,

N−k∑
i=0

(−1)i

�tα

(
α

i

)
λ((k + i)�t) − w(k�t)[x(k�t) − xref ]

− a(k�t)λ(k�t) − λ(N�t)(tf − ti − k�t)−α

�(1 − α)
= 0,

(10)

where k = N − 1, . . . , 0

β2(k�t) − β1(k�t) − b(k�t)λ(k�t)
z(k�t)

− ξ1(k�t) = fmin k = 1, . . . , N (11)

β2(k�t) − β1(k�t) − b(k�t)λ(k�t)
z(k�t)

+ ξ2(k�t) = fmax k = 1, . . . , N. (12)

At this stage, we are able to convert the problem defined by equations (3) to (6) into
solving the discrete time equations described from (9) to (12), which can reduce to
either solving a linear system when no inequality constraints are considered or a linear
program when tight bounds on both the state and control variables are considered.

4.2. Finite Time Fractal Optimal Control with Integral of Absolute Value of Tracking Error
Criterion (IAE)

The cost function that needs to be minimized in this case is as follows:

min
f (t)

1
2

∫ tf

ti
[w(t)|x(t) − xref | + z(t) f (t)2]dt (13)

subject to constraints given by Equations (4), (5), and (6), respectively.
By focusing on the absolute value of the error in Equation (13), the optimal controller

tries to find the pacing frequency such that positive and negative deviations from the
reference value for the R-R interval are minimized. This criterion is more sensitive
to parameter variations when compared to the squared error criterion. Also, using
the absolute difference of error evaluates to linear equations when finding optimality
conditions is easier to implement in practice. The simplicity of this cost function makes
it very suitable for computer simulations.
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To solve this optimal control problem, we use again the concept of Lagrange multi-
pliers as follows:

L(x, f, w, z, β1, ξ1, β2, ξ2, λ) =
∫ tf

ti

{
w(t)|x(t) − xref |

2
+ z(t) f (t)2

2
+ β1( f − fmin − ξ1)

+β2( fmax − f − ξ2) − λ

[
dαx(t)

dtα
− a(t)x(t) − b(t) f (t)

]}
dt.

(14)

where λ, β1, β2, ξ1 and ξ2 have the same meanings as the Lagrange multipliers in
Equation (7).

Applying the optimality conditions as defined by the ones in Equation 8 on the new
Lagrangian function L given in Equation (14), we get the following relations together
with the conditions defined by Equations (9), (11) and (12), respectively:

N−k∑
i=0

(−1)i

�tα

(
α

i

)
λ((k + i)�t) − w(k�t)

2
sgn(x(k�t) − xref )

− a(k�t)λ(k�t) − λ(N�t)(tf − ti − k�t)−α

�(1 − α)
= 0,

(15)

where k = N − 1, . . . , 0 and sgn(x) is defined as:

sgn(x) = 1 i f x > 0
= −1 i f x < 0.

4.3. Finite Time Fractal Optimal Control with Integral of Time Multiplied by Absolute Error
Criterion (ITAE)

The cost function that needs to be minimized in this case is as follows:

min
f (t)

1
2

∫ tf

ti
[t w(t) |x(t) − xref | + z(t) f (t)2]dt (16)

subject to constraints given by Equations (4), (5), and (6), respectively.
The absolute error minimization criterion discussed in the previous section has a

drawback, namely it can produce large overshoots and oscillations of x(t). Also, the time
at which the values of x(t) become close to xref may play in some medical conditions a
crucial role.

The criterion introduced in Equation (16) is much more selective than the previous
two cost functions summarized in Equation (3) and (13), respectively. Therefore, by
focusing on the integral of the absolute value of error multiplied by the time at which
this error occurs, as shown in Equation (16), the optimal controller tries to find the
pacing frequency such that positive and negative deviations from the reference value
for the R-R interval, as well as the time at which it occurs are minimized. The criterion
used here weights the existing error (x(t) − xref ) more heavily after long times as
opposed to those existing initially. Also, using this criterion gives small overshoots and
oscillations. However, this cost function is more sensitive to parameter variations as
compared to the other two discussed above.
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To solve this optimal control problem, we use again the concept of Lagrange multi-
pliers as follows:

L(x, f, w, z, β1, ξ1, β2, ξ2, λ) =
∫ tf

ti

{
t w(t) |x(t) − xref |

2
+ z(t) f (t)2

2
+ β1( f − fmin − ξ1)

+β2( fmax − f − ξ2) − λ

[
dαx(t)

dtα
− a(t)x(t) − b(t) f (t)

]}
dt.

(17)

where λ, β1, β2, ξ1 and ξ2 have the same meanings as the Lagrange multipliers in
Equation (7).

Applying the optimality conditions as defined by the ones in Equation (8) on the new
Lagrangian function L given in Equation (17), we get the following relations together
with the conditions defined by Equations (9), (11), and (12), respectively:

N−k∑
i=0

(−1)i

�tα

(
α

i

)
λ((k + i)�t) − w(k�t)(k�t)

2
sgn(x(k�t) − xref )

− a(k�t)λ(k�t) − λ(N�t)(tf − ti − k�t)−α

�(1 − α)
= 0

(18)

for all k = N − 1, . . . , 0.

4.4. Finite Time Fractal Optimal Control with Integral of Time Multiplied by Squared
Tracking Error Criterion (ITSE)

The cost function that needs to be minimized in this case is as follows:

min
f (t)

1
2

∫ tf

ti
[t w(t) (x(t) − xref )

2 + z(t) f (t)2]dt (19)

subject to constraints given by Equations (4), (5), and (6), respectively.
By focusing on the integral of the square of error multiplied by time in Equation (19),

the optimal controller tries to find the pacing frequency such that positive and negative
deviations from the reference value for the R-R interval, as well as the time at which
they occur are minimized. Overshoots and oscillations produced are also smaller in this
case. However, the controller is less sensitive to parameter variations as compared to
time multiplied by absolute error criterion.

To solve this optimal control problem, we use again the concept of Lagrange multi-
pliers as follows:

L(x, f, w, z, β1, ξ1, β2, ξ2, λ) =
∫ tf

ti

{
t w(t) (x(t) − xref )

2

2
+ z(t) f (t)2

2
+ β1( f − fmin − ξ1)

+β2( fmax − f − ξ2) − λ

[
dαx(t)

dtα
− a(t)x(t) − b(t) f (t)

]
dt

}

(20)

where λ, β1, β2, ξ1 and ξ2 have the same meanings as the Lagrange multipliers in
Equation (7).

Applying the optimality conditions as defined by the ones in Equation (8) on the new
Lagrangian function L given in Equation (20), we get the following relations together
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with the conditions defined by Equations (9), (11), and (12), respectively:

N−k∑
i=0

(−1)i

�tα

(
α

i

)
λ((k + i)�t) − w(k�t) (k�t) [x(k�t) − xref ]

− a(k�t)λ(k�t) − λ(N�t)(tf − ti − k�t)−α

�(1 − α)
= 0

(21)

for all k = N − 1, . . . , 0.

4.5. Finite Time Fractal Optimal Control with Integral of Squared Time Multiplied by
Squared Tracking Error Criterion (ISTSE)

The cost function that needs to be minimized in this case is as follows:

min
f (t)

1
2

∫ tf

ti
[t2 w(t) (x(t) − xref )

2 + z(t) f (t)2]dt (22)

subject to constraints given by Equations (4), (5), and (6), respectively.
By focusing on the integral of the square of error multiplied by square of the time

at which this error occurs, as given in Equation (22), we synthesize a controller that
avoids large errors as time passes; this is because the errors that exist after long times
are weighed more heavily as compared to the cost function in Section 4.4.

To solve this optimal control problem, we use again the concept of Lagrange multi-
pliers as follows:

L(x, f, w, z, β1, ξ1, β2, ξ2, λ) =
∫ tf

ti

{
t2 w(t) (x(t) − xref )

2

2
+ z(t) f (t)2

2
+ β1( f − fmin − ξ1)

+β2( fmax − f − ξ2) − λ

[
dαx(t)

dtα
− a(t)x(t) − b(t) f (t)

]}
dt.

(23)

where λ, β1, β2, ξ1 and ξ2 have the same meanings as the Lagrange multipliers in
Equation (7).

Applying the optimality conditions as defined by the ones in Equation (8) on the new
Lagrangian function L given in Equation (23), we get the following relations together
with the conditions defined by Equations (9), (11) and (12), respectively:

N−k∑
i=0

(−1)i

�tα

(
α

i

)
λ((k + i)�t) − w(k�t) (k�t)2 [x(k�t) − xref ]

− a(k�t)λ(k�t) − λ(N�t)(tf − ti − k�t)−α

�(1 − α)
= 0

(24)

for all k = N − 1, . . . , 0.

4.6. Finite Time Fractal Optimal Control with Integral of Fourth Power of Time Multiplied by
Squared Tracking Error Criterion

The cost function that needs to be minimized in this case is as follows:

min
f (t)

1
2

∫ tf

ti
[t4 w(t) (x(t) − xref )

2 + z(t) f (t)2]dt (25)

subject to constraints given by Equations (4), (5) and (6), respectively.
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Table I.
Estimated parameters for non-fractal (i.e., 1-step ARMA) and fractal model for 5 different time series of R-R
interval for healthy individuals [PhysioNet]. Comparison between a non-fractal model and a fractal model in
terms the goodness-of-fit is also tabulated. All time series except for those with ID 3 have a p-value of 1 which
suggests that the fractal model should be used to model heart rate activity.

Heart Classical (non-fractal) model Fractal model
rate

Parameters of the Goodness-of-fit Parameters of the Goodness-of-fit
Model Model

Time
series a b p-value Test α a b p-value Test

ID statistic statistic
1 0.9665 0.0267 0 61.127 0.6226 0.1613 −0.1284 1 0.2754
2 0.979 0.0193 0 30.031 0.7762 0.0355 −0.0326 1 0.2564
3 0.9513 0.0403 0 120.880 0.707 0.1255 −0.1038 0.51 0.3182
4 0.9525 0.0409 0 73.945 0.7258 0.1105 −0.0951 1 0.2544
5 0.9663 0.0286 0 88.339 0.699 0.0643 −0.0546 1 0.2714

To solve this optimal control problem, we use again the concept of Lagrange multi-
pliers as follows:

L(x, f, w, z, β1, ξ1, β2, ξ2, λ) =
∫ tf

ti

{
w(t) t4 (x(t) − xref )

2

2
+ z(t) f (t)2

2
+ β1( f − fmin − ξ1)

+β2( fmax − f − ξ2) − λ

[
dαx(t)

dtα
− a(t)x(t) − b(t) f (t)

]}
dt.

(26)

where λ, β1, β2, ξ1 and ξ2 have the same meanings as the Lagrange multipliers in
Equation (7).

Applying the optimality conditions as defined by the ones in Equation (8) on the new
Lagrangian function L given in Equation (26), we get the following relations together
with the conditions defined by Equations (9), (11) and (12), respectively:

N−k∑
i=0

(−1)i

�tα

(
α

i

)
λ((k + i)�t) − w(k�t) (k�t)4 [x(k�t) − xref ]

− a(k�t)λ(k�t) − λ(N�t)(tf − ti − k�t)−α

�(1 − α)
= 0

(27)

for all k = N − 1, . . . , 0.

5. EXPERIMENTAL SETUP AND RESULTS

The optimal control approaches introduced in Section 4 make sense only if the predicted
model of heart is appropriate. Therefore, we first estimate the heart parameters using
fractal and non-fractal approaches and then compute the goodness-of-fit for each model.
We perform a hypothesis testing to verify whether the observed data can be modeled
by each specific model. The observed p-value is a measure of closeness between the
proposed model and the actual data. Next, we provide a complete experimental analysis
of the problems introduced in Section 4.

5.1. Parameter Identification of Fractional Calculus Model

Using real world heart rate time series from PhysioNet, we compute the parameters
of the heart rate activity model by using two approaches: i) Using ordinary differential
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Table II.
Estimated parameters for non-fractal (i.e., 1-step ARMA) and fractal model for 5 different time series of R-R
interval for patients with atrial fibrillation [PhysioNet]. Comparison between a non-fractal model and a fractal
model in terms the goodness-of-fit is also tabulated. Fractional order differential equation can be used to model
the heart rate of patient with atrial fibrillation as justified by the p-value.

Heart Classical (non-fractal) model Fractal model
rate

Parameters of the Goodness-of-fit Parameters of the Goodness-of-fit
Model Model

Time
series a b p-value Test α a b p-value Test

ID statistic statistic
1 0.0407 −0.0245 0.0018 0.3845 0.6597 0.5827 0.3508 0.8471 0.295
2 0.0007 −0.0005 0.0031 0.3806 0.6841 0.7302 0.5853 0.4296 0.3224
3 0.0050 0.0055 0.0036 0.3795 0.6371 0.7862 0.8697 0.5523 0.3153
4 0.0289 0.0167 0.0017 0.3851 0.6307 0.8082 0.4659 0.226 0.3354
5 −0.0225 0.0142 0.0144 0.3681 0.6516 0.6850 0.4316 0.5098 0.3178

equation of order 1 and computing a and b (i.e., in Equation (4)) and ii) Using fractional
differential equation and computing a , b and α coefficients in Equation (4).

To discriminate between the suitability of modeling the heart rate time series via
either an integer or a fractional order differential equation, we use the periodogram
method developed by Beran [1994], which relies on estimating the moments of the
observations, comparing them with those of the postulated models, and finally evaluate
the goodness-of-fit so we can compare the accuracy of the two models. The goodness-
of-fit is calculated at a threshold of 0.05, which is usually a reasonably good statistical
significance level. This means that if the p-value calculated is less than 0.05, then with
95% confidence, we can reject the goodness of that particular model.

By estimating the parameters of the model via maximum likelihood method, com-
puting the goodness-of-fit results and comparing the 4th and 9th columns of Table I,
we can draw the following conclusions.

—Modeling the heart rate via classical (i.e., integer or non-fractal) model has to be
rejected because of getting a p-value equal to 0.

—Modeling via fractional differential equation cannot be rejected and should be pre-
ferred over classical first order ordinary differential equations.

The parameters predicted and their goodness-of-fit are depicted in Table I.

5.2. Performance Analysis of Constrained Finite Horizon Optimal Control Problem

In order to analyze the performance of the control problem for the six cost functions
mentioned in Section 4 along with the given constraints, we consider a time series
of a patient suffering from bradycardia [PhysioNet]. Under this condition, the heart
rate is typically below 60 beats per minute; this may result in cardiac arrest because
of insufficient pumping of oxygen by heart, fainting, shortness of breath, and in some
cases even death.

The R-R interval corresponding to 60 beats per minute is 1s. The normal heart rate
is 75 beats per minute, which corresponds to an R-R interval of 0.8 seconds. Therefore
the objective of the control problem is to bring the R-R interval down for a patient
suffering from bradycardia to the normal level of 0.8 seconds. In Table II, we calculate
the parameters and goodness-of-fit for patients suffering with atrial fibrillation. It can
be observed that although the p-value for the classical case is greater than 0, it still
remains below the statistically significant level. Also, the p-value for the fractal model
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Fig. 5. (a) Comparison between the measured R-R intervals of a patient suffering from bradycardia and the
minimum and maximum bounds on the measured R-R intervals for a healthy individual at rest. It can be
clearly seen that the R-R interval values are on the higher side. The average R-R interval value for the first
100 beats is 1.1 seconds. The standard deviation is 0.27 seconds. This can lead to cardiac arrest, faintness,
shortness of breath. In addition, one can note that the controller exhibits less than 1% error after only 66%
of the finite control horizon. (b) Applied fractal optimal controller with mean squared error criterion which
decreases the R-R interval to 0.8 seconds in 0.1 seconds. (c) Normalized pacing frequency that results in
increasing the heart rate from approximately 50 beats per minute to 75 beats per minute.

is significant; this implies that the fractal model cannot be rejected for patients with
atrial fibrillation.

The first step in our experiment is to analyze the goodness-of-fit for both the models,
i.e., non-fractal and fractal model. The time series with ID3 in Table II come from a
patient suffering from bradycardia. As it can be seen from this table, the p-value for
the non-fractal model is only 0.0036, which is below the significance level of 0.05; hence
the non-fractal model cannot be applied. However, the fractal model has a p-value of
0.5523, which is well above the significance level; hence we can apply this fractal model
to solve the finite time control problem.

After analysing the goodness-of-fit and deciding which model to use, the next step is to
solve the control problem using the appropriate model of the heart. The control problem
aims at finding out the optimal pacing frequency such that the heart rate of 75 beats per
minute is achieved within a finite time horizon of 0.1 seconds. The results for the values
of controlled R-R interval and the pacing frequency are shown in Figures 5 to 10, respec-
tively, for the optimal control problem as mentioned in Sections 4.1 to 4.6, respectively.

The w and z coefficients for the finite time optimal control problem (as mentioned
in Section 4.1) are chosen to be both 1. As it can be seen in Figure 5(b), within a
finite time horizon of 0.1 seconds, the desired value for the R-R interval, which is
0.8 (equivalent to 75 beats per minute) is achieved for all discretization steps (i.e.,
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Fig. 6. (a) Applying the fractal optimal controller described in Section 4.2; as shown, the R-R interval is
decreased from 1.2 seconds to 0.8 seconds in a finite time horizon of 0.1 seconds. (b) Controlled normalized
pacing frequency required by the control problem described in Section 4.2 to increase the heart rate to 75
beats per minute.

Fig. 7. (a) Applying the fractal optimal controller described in Section 4.3; as shown, the R-R interval is
decreased from 1.2 seconds to 0.8 seconds in a finite time horizon of 0.1 seconds. (b) Controlled normalized
pacing frequency required by control problem described in Section 4.3 to increase the heart rate to 75 beats
per minute.

N = 30, 40, 100, 500 and 1000). Figure 5(c) shows the control signal pacing frequency,
which varies as a function of time. The final normalized control pacing frequency when
N = 30, 40, 100 or 500 discretization steps are considered, turns out to be 0.8021; for
N = 1000 it is 0.7738 Consequently, the loss in accuracy for computing the control
pacing frequency from fewer discretization steps (N = 30, 40 and 100) compared to
using a greater number of discretization steps (N = 1000) is only 5.7%.

The effect of the cost function on the mean R-R interval and normalized pacing
frequency is not significant; this can be seen in Figures 5(b), 5(c), 6(a), 6(b), 7(a), 7(b),
8(a), 8(b), 9(a), 9(b), 10(a) and 10(b). In all these cases, the desired normal R-R interval
of 0.8 seconds is attained. Within a time horizon of 0.0656 seconds, the R-R interval
value reaches a value of 0.804 seconds, which is within 0.5% (i.e., y = 1) of the desired
R-R value.
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Fig. 8. (a) Applying the fractal optimal controller described in subsection 4.4; as shown, the R-R interval is
decreased from 1.2 seconds to 0.8 seconds in a finite time horizon of 0.1 seconds. (b) Controlled normalized
pacing frequency required by control problem described in subsection 4.4 to increase the heart rate to 75
beats per minute.

Fig. 9. (a) Applying the fractal optimal controller described in subsection 4.5; the R-R interval is decreased
from 1.2 seconds to 0.8 seconds in a finite time horizon of 0.1 seconds. (b) Controlled normalized pacing
frequency required by control problem described in subsection 4.5 to increase the heart rate to 75 beats per
minute.

Next, we consider the effect of changing the value of the weighting coefficient w when
solving the optimal control problems described in Section 4.1 and Section 4.2. This is
shown in Figures 11 and 12, respectively.

In Figure 11, one can observe that changes in the w value do not change the conver-
gence characteristics significantly, which means that the squared error term is more
dominant as compared to the weighting coefficient in determining the convergence
time. In Figure 12, however, the red curve for w = 5 dips faster as compared to the
other curves; this means that, in the absolute error case, the effect of weighting coeffi-
cient is more significant than that in the squared error case.

The results given in this section suggest that in a finite time horizon of 0.1 seconds,
the reference value of the R-R interval (i.e., 0.8 seconds) can be achieved using any
of the cost function described in Section 4. Also, the squared error criterion converges
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Fig. 10. (a) Applying the fractal optimal controller described in Section 4.6; the R-R interval is decreased
from 1.2 seconds to 0.8 seconds in a finite time horizon of 0.1 seconds. (b) Controlled normalized pacing
frequency required by control problem described in Section 4.6 to increase the heart rate to 75 beats per
minute.

Fig. 11. Effect of changes in the w value on the convergence characteristics for optimal control problem
described in Section 4.1.

faster than the absolute error criterion. The effect of changing the value of weight-
ing coefficient w is more significant when considering the absolute error criterion as
compared to squared error one.

5.3. Hardware Complexity of Fractal Optimal Controller

The Observation module in Figure 2 refers to some digital filters required to estimate
the parameters of the model either in the frequency or wavelet domains. The Actuation
module in Figure 2 refers to a series of electrodes that can deliver to the heart specific
control signals (i.e., electrical pulses of predefined amplitude and duration) to cause
the depolarization of the myocardium. Consequently, we consider next the hardware
complexity of the controller as this contributes the most to the overall CPS design.
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Fig. 12. Effect of changes in the w value on the convergence characteristics for optimal control problem
described in Section 4.2.

In Section 4, we have presented the formulation of fractal optimal control problem
and provided a discrete time linearization of the same. The discrete time linearization
can be interpreted as a linear matrix equation of the form Ax = B, where A is a 2N×2N
matrix and B is a 2N × 1 column vector, x is a 2N × 1 column vector solution to this
equation. In this section, the hardware complexity (i.e., area overhead) is investigated
for implementation of the fractal optimal controller through an FPGA prototype.

There are several ways to solve the linear matrix equation such as: Gaussian elimi-
nation, LU factorization, Cramer’s method and iterative methods. The time complexity
associated with Gaussian elimination and LU factorization is O(N3) where N is the
number of unknown variables. Better time complexity in solving the linear matrix
equation can be achieved by using the Cramer’s method if parallel processing elements
are used. This is discussed next.

The time complexity of Cramer’s method for solving the linear matrix equation is
based on the efficiency in calculating the determinant of an N×N matrix. Determinant
calculation can be done in O(N) time using Chio’s pivotal condensation process by
making use of (N − 1)2 parallel processing elements [Sridhar et al. 1987]. In Chio’s
pivotal condensation process an initial matrix of order N × N is iteratively reduced
to a matrix of order 2 × 2. In each iteration the matrix is reduced by order 1. So the
reduction operation requires O(N) time.

At each reduction step, O(N2) 2 × 2 determinants are calculated. So if we have
(N − 1)2 parallel processing elements, the entire determinant calculation can be done
in O(N) time. These processing elements are multiply and accumulate (MAC) units.
Hence performance can be increased at an additional cost of an added MAC unit.

We have implemented this on a Xilinx Virtex4 FPGA (Device: XC5V LX30 and Pack-
age: FF324). Xilinx SXT is used for synthesis and the ISim package is used for simu-
lations [Xilinx].

Table III summarizes the area overhead of the designed controller in terms of the
slice, LUT, and register utilization. The worst case time to solve a 16 × 16 determinant
using only one Chio’s Pivotal Condensation processing element is 1190 clock cycles.
Here DSP 48 refers to the Digital Signal Processing slice [XilinxDSP].
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Table III. Controller area Consumption in Terms of the Number of Slices,
Registers, LUTs

Size of Linear System Registers LUT RAM/FIFO DSP48s
16 243 239 1 6
128 340 618 29 6

6. CONCLUSION

In this article, we have discussed several approaches for pacemaker design needed to
control the heart rate variability as a fundamental CPS optimization problem. Towards
this end, we have solved a constrained finite horizon fractal optimal control approach to
regulate R-R interval and analyzed the goodness-of-fit of fractal model to R-R dynamics.
In addition, the comparison of goodness-of-fit with the classical (non-fractal) model was
also discussed. Then, using the fractal model of heart, the controller was designed for six
different cost functions and their performance for patient suffering from bradycardia
was analyzed as a concrete example. Finally, the feasibility of building this CPS was
analyzed by reporting the area overhead values obtained from FPGA implementation.

As future work, we plan to investigate the stability of the controller in presence of
uncertainties and analyze the performance of various cost functions that make use of
higher order moments.
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